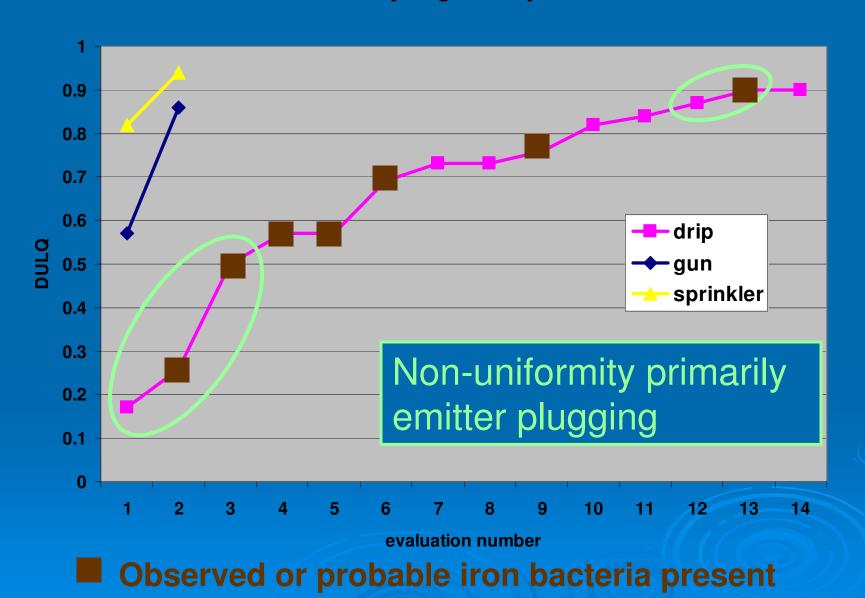



## Irrigation and Water Workshop Series


## Rust Never Sleeps

Ways to deal with iron in drip irrigation water





#### **WA berry irrigation systems**



#### Iron Bacteria

- Common in nature (extreme example on right).
- "Feed" on soluble (ferrous) iron in well water.





#### Iron Bacteria

- Excrete insoluble (ferric) iron and slime.
- Can plug emitters
   when soluble iron
   levels are as low as
   0.1 ppm





# Drip Water Quality guidelines (from Kansas State extension bulletin MF-2178)

| Factor           | gging Potential of Drip Irrigation System Water Sources Plugging Hazard |                            |         |
|------------------|-------------------------------------------------------------------------|----------------------------|---------|
|                  | Slight                                                                  | Moderate                   | Severe  |
|                  | [in par                                                                 | ts per million (ppm)* exce | ept pH] |
| Physical         |                                                                         |                            |         |
| Suspended Solids |                                                                         |                            |         |
| (filterable)     | <50                                                                     | 50-100                     | >100    |
| Chemical         |                                                                         |                            |         |
| pН               | <7.0                                                                    | 7.0-7.5                    | >7.5    |
| Manganese        | < 0.1                                                                   | 0.1-1.5                    | >1.5    |
| Iron             | < 0.1                                                                   | 0.1-1.5                    | >1.5    |
| Hardness         | <150                                                                    | 150-300                    | >300    |
| Hydrogen sulfide | < 0.5                                                                   | 0.5-2.0                    | >2.0    |

\*Some water reports list results as milligrams per liter, mg/L, which is equal to parts per million, ppm

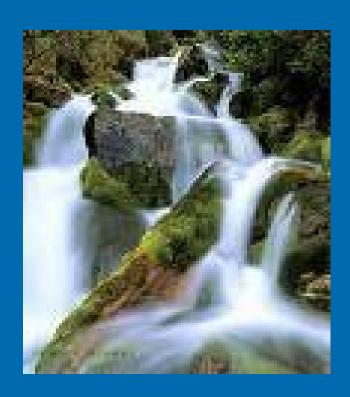
## Testing for Iron (DIY)

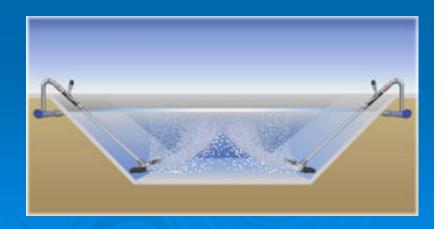
- •Ferrous Iron test, sometimes called **Dissolved** iron test: reacts with soluble (ferrous) iron to form a colored compound. More iron=more color
- •Total Iron test: first acidifies the water to make all the iron soluble, then undergoes a similar reaction to the one above.



Both types of test are available from Hach (www.hach.com)

## Testing for Iron (outside labs)


- Local labs for iron testing (that I know of):
  - Wm. F. Black Soil testing & Analysis: 360-757-6112
  - Edge Analytical: 360-757-1400
  - Exact Scientific Services: 360-733-1205
- For a more **complete list** of labs in the Pacific Northwest, see EB1578E "Analytical Laboratories and Consultants serving Agriculture in the Pacific Northwest", http://wsprs.wsu.edu/AnalyticalLabsEB1578E.pdf


### Controlling Iron and Iron Bacteria

- Oxidize the ferrous iron, then Precipitate and Filter
  - Aeration
  - Chlorine
  - Ozone
  - Other oxidizing agents
- Oxidize, then sequester

#### Aeration

- Oxygen in air used to oxidize
  - Waterfalls
  - Cascading towers
  - Water Spray/pond
  - Venturi devices
- ↑ Air is free, effective. No chemical usage.
- ▼ Takes time for iron to precipitate, so large settling ponds often used





#### Chlorine



- Commonly used method to manage iron in irrigation water.
- Relatively easy to meter accurately, and easy to monitor appropriate levels.
- Oxidation time depends upon water pH, temperature.

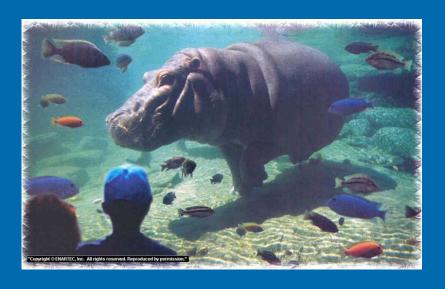
## Metering Chlorine

- > Add 0.6 ppm Cl for each ppm ferrous iron
  - Liquid sodium hypochlorite solutions are usually 5.25, 10 or 15% chlorine.
  - Chlorine gas is 100% chlorine
- Often, additional chlorine will be needed to oxidize organic compounds, etc in the water.
- Goal is to have about 1 ppm residual free chlorine at the end of the system (emitters furthest from the pump. Use a D.P.D. test.
- > Allowed for organic production.

#### Hazards of Chlorine

- Chlorine gas can be FATAL after a few breaths at 1000 ppm.
- If using chlorine gas, exercise EXTREME CAUTION!
- Liquid hypochlorite + acid = Chlorine gas, so do NOT mix chlorine and acid solutions! Always inject chlorine before filters, and inject acid after filters.

## Is Chlorine bad for my plants?


Some plants, particularly woody perennials such as blueberries, are sensitive to chloride.

Irrigation water with <105 ppm Chloride is generally thought to be unlikely to cause toxicity.

➤ Using the 0.6 ppm Cl / 1 ppm Fe rule, treat

## Is Chlorine bad for my plants?

- It is smart to look at other sources of chlorine, though.
  - Irrigation water.
  - Some fertilizers have high amounts of chlorine – check with your fertilizer dealer
  - Consider checking Cl<sup>-</sup> in your soil
    - check soil EC
    - Include CI in your soil test
    - Soil salinity analysis





#### Ozone

- Often injected with venturi devices
- Commonly used in Aquariums, Water Treatment plants
- ↑ Very rapid oxidation, no residual chemicals
- Many systems lack
   effective metering ability,
   no residual activity

## Other oxidizing agents

- Other oxidizing agents
  - Chlorine dioxide (very rapid oxidization)
  - Hydrogen Peroxide
  - Peracetic acid (ex: LineBlaster)
- Sequestration agents bind iron so that it won't precipitate in the system
  - Polyphosphates
  - Phosphonic acid (ex: CH20's Sure Flow DS)
  - Sodium silicate

## Don't forget maintenance!

- > Flush lines regularly
  - Start by flushing once a month.
  - If it takes more than 5 sec for the line most distant from the pump to run clear, you need to flush more frequently
- Backflush filters frequently
- Check Pressures and flows regularly
- Consider an Irrigation System Evaluation

#### Want more info?

http://mtvernon.wsu.edu/Small Fruit Hort/ SFberrylinks.html

#### Thank You!

- > Funding
  - Washington Red Raspberry Commission
  - Washington Blueberry Commission
  - Washington Strawberry Commission
  - Washington State Commission on Pesticide Registration